Emerging technologies with intense electromagnetic fields and plasma

National Institute for Laser, Plasma and Radiation Physics

for energy, life sciences, environment, communications and security

http://www.inflpr.ro

http://tomography.inflpr.ro

Ion TISEANU ion.tiseanu@inflpr.ro

Motivation

X-ray tomography is an imaging technique for non-invasive volumetric characterization of materials and processes

It can be used in optimization of processes of waste valorization as:

- recycling & resource recovery (ex. rare earths, tungsten);
- pelletization of coal ash or fly ash resulted from solid waste incinerators;
- production of composites from waste recycled armor materials and natural matrix (ex. volcanic ash, mortar);
- characterization of waste recycled glass/textile fibers to be used in composites;
- production of ultra-light composites used as building materials;
- characterization of wood-plastic composites;
- advanced characterization and modeling of porous materials (ex. charcoal pellets) ...

It could provide a unique access channel for a fully non-invasive inspection and quantitative analysis of some hazardous waste.

http://tomography.inflpr.ro

Applications of X-ray microtomography in microstructural analysis of materials resulting from waste processing

Outline

- Tomography equipment
- Porosity analysis & fluid transport in porous media
- Passive treatment to remediate contaminated water from acid mine drainage
- Tomography analysis of fly ash pelletization process
- Volumetric analysis of composite materials based on waste of metal or wood processing
- Geological CO2 storage

Tomography Equipment

High penetration power microfocus @ 320 kV

Technical data of various XCTs

Туре		X-ray source	Voxel size
Medical XCT- systems	Med-XCT	140 kV rotating anode tube	>(0.3 mm) ³
Cone beam XCT: Rayscan 250E or v tome x s 240	μХСТ	225 kV μ-focus tube	>(2 µm) ³
Cone beam XCT: nanotom 180	Sub-µXCT	180 kV nanofocus tube	>(0.4 µm) ³
INFLPR NanoCT	Sub-µXCT	225 kV nanofocus tube	>(0.5 μm) ³
INFLPR XCT	μХСТ	225 kV μ-focus tube 320 kV μ-focus tube	>(2 μm) ³ >(10 μm) ³
Synchrotron XCT: Grenoble, ESRF- ID19	sXCT	7–60 keV	>(0.2 µm) ³

NDT E Int. 2010 Oct; 43(7-3): 599–605.

X-ray microtomography

Equipment for X-Ray microtomography analysis and compositional mapping

Medical devices

Four versatile tomography units designed and constructed in INFLPR with energies from 50 to 320 keV and sub-micron feature recognition. Wide variety of applications with samples sizes from 5 m down to 100 µm

Carbon Fiber Composite

3D targets for high power laser interaction

Berea sandstone multi-resolution analysis

Berea sandstone Φ = 5 mm - pore analysis

Porosity classification by volume, area, shape, connectivity etc.

Material	
Material volume [mm³]	20.4175
Defect volume [mm³]	2.5514
Defect volume ratio [%]	11.11

Berea sandstone $\Phi = 5 \text{ mm} - \text{inclusions analysis}$

Inclusion analysis: volume, area, shape, density, composition etc.

Material

Material volume [mm³]	22.7257
Defect volume [mm³]	0.2432
Defect volume ratio [%]	1.06

Berea sandstone 2 mm - submicron pore analysis

3D representation of all pores from reconstructed volume

ROI – magnified inner pores in 3D

Capilary presure simulation Φ =6 mm – wetting phase

3D visualisation of isolated pore space

Passive treatment systems designed to remediate contaminated water from acid mine drainage

Passive treatment systems designed to remediate contaminated water from acid mine drainage

Rocks and mineral grain filter (such as calcite, aragonite or dolomite) with size grain between 1-2 mm

Passive treatment systems designed to remediate contaminated water from acid mine drainage

Directional variability

Grain orientation on right view sections

Grain orientation on top view sections

Tomography analysis of fly ash pelletization process

Tomography analysis of fly ash palletization process Core analysis

ROI selection

Surface determination on selected ROI

Extracted core volume: 16.04%

Extracted ROI with surface determination

Extracted core

Extracted core

Extracted core volume: 32.92%

Tomography analysis of fly ash pelletization process Porosity analysis

Tomography analysis of fly ash palletization process Porosity analysis

Material	
Material volume [mm³]	22409.8594
Defect volume [mm³]	44.6834
Defect volume ratio [%]	0.20

Tomography analysis of fly ash palletization process Inclusions analysis

Composition mapping by microbeam X-ray fluorescence microXRF

Standardless procedure for elemental composition

Elemental composition of fly ash pellets by microXRF

Inclu<mark>sions on pellet surf</mark>ace

Element	Concentratie (wt%)
Fe	1,92
Cl	8,54
К	5,57
Са	76,11
Cu	0,45
Zn	3,23
Pb	0,65
Ti	2,74
Br	0,79

Volumetric analysis of waste based composite materials volcanic ash & metallic insertions

Composite material made by vulcanic ash (matrix) and metallic swarf (insertions)

Values (grid coord	dinate system)	
Min.:	34356.00	
Max.:	50445.00	
Mean:	36666.64	
Deviation:	2219.04	
Volume [mm³]	62.77	
Number of voxels:	136268705	
Between cursors [%]:	12.17	

Total volume of metalic insertions from selected ROI

Volumetric analysis of waste based composite material foam matrix & wood fibers

Geological CO2 storage

of the repository rocks

wt.% microcline)